6,224 research outputs found

    The UV behavior of Gravity at Large N

    Full text link
    A first step in the analysis of the renormalizability of gravity at Large N is carried on. Suitable resummations of planar diagrams give rise to a theory in which there is only a finite number of primitive superficially divergent Feynman diagrams. The mechanism is similar to the the one which makes renormalizable the 3D Gross-Neveu model at large N. Some potential problems in fulfilling the Slavnov-Taylor and the Zinn-Justin equations are also pointed out.Comment: 17 pages, 9 figures. To appear on Phys. Rev. D. Two more references, further technical details and the discussion of the KLT relations at large N have been include

    Optimal Single-Choice Prophet Inequalities from Samples

    Get PDF
    We study the single-choice Prophet Inequality problem when the gambler is given access to samples. We show that the optimal competitive ratio of 1/21/2 can be achieved with a single sample from each distribution. When the distributions are identical, we show that for any constant ε>0\varepsilon > 0, O(n)O(n) samples from the distribution suffice to achieve the optimal competitive ratio (0.745\approx 0.745) within (1+ε)(1+\varepsilon), resolving an open problem of Correa, D\"utting, Fischer, and Schewior.Comment: Appears in Innovations in Theoretical Computer Science (ITCS) 202

    A New Approach to Flavor Symmetry and an Extended Naturalness Principle

    Full text link
    A class of non-supersymmetric extensions of the Standard Model is proposed in which there is a multiplicity of light scalar doublets in a multiplet of a non-abelian family group with the Standard Model Higgs doublet. Anthropic tuning makes the latter light, and consequently the other scalar doublets remain light because of the family symmetry. The family symmetry greatly constrains the pattern of FCNC and proton decay operators coming from scalar-exchange. Such models show that useful constraints on model-building can come from an extended naturalness principle when the electroweak scale is anthropically tuned.Comment: 31 pages, 3 figure

    Scale invariant Euclidean field theory in any dimension

    Full text link
    We discuss D-dimensional scalar field interacting with a scale invariant random metric which is either a Gaussian field or a square of a Gaussian field. The metric depends on d-dimensional coordinates (where d is less than D). By a projection to a lower dimensional subspace we obtain a scale invariant non-Gaussian model of Euclidean quantum field theory in D-d or d dimensions.Comment: Latex, 16 page

    Heavy Quark Potentials in Some Renormalization Group Revised AdS/QCD Models

    Full text link
    We construct some AdS/QCD models by the systematic procedure of GKN. These models reflect three rather different asymptotics the gauge theory beta functions approach at the infrared region, βλ2,λ3\beta\propto-\lambda^2, -\lambda^3 and βλ\beta\propto-\lambda, where λ\lambda is the 't Hooft coupling constant. We then calculate the heavy quark potentials in these models by holographic methods and find that they can more consistently fit the lattice data relative to the usual models which do not include the renormalization group improving effects. But only use the lattice QCD heavy quark potentials as constrains, we cannot distinguish which kind of infrared asymptotics is the better one.Comment: comparisons with lattice results, qualitative consideration of quantum corrections are added. (accepted by Phys. Rev. D

    Feshbach Resonances and Limiting Thermodynamics of Strongly Correlated Nucleons

    Full text link
    A finite temperature model of strongly correlated nucleons with underlying isospin symmetries is developed. The model can be used to study the role of bound states and Feshbach resonances on the thermal properties of a spin 1/2, isospin 1/2 system of protons and neutrons by varying the proton fraction. An analysis of features associated with a universal thermodynamic limit or unitary limit is given. In the limit of very large scattering length, the effective range to quantum thermal wavelength appears as a limiting scale in an interaction energy and equation of state.Comment: 8 pages, 4 figure

    The footprint of E7 in amplitudes of N=8 supergravity

    Full text link
    We study the low energy theorems associated with the non-linearly realized continuous E7 symmetry of the on-shell N=8 supergravity. For Nambu-Goldstone bosons we evaluate the one-soft-scalar-bosonemission amplitudes by computing the E7 current matrix element on the one-particle external lines. We use the explicit form of the conserved E7 Noether current and prove that all such matrix elements vanish in the soft momentum limit,assuming the SU(8) symmetry of the S-matrix.This implies that all tree amplitudes vanish in the one-soft-boson limit. We also discuss the implications of unbroken E7 symmetry for higher-order amplitudes.Comment: 18 p., 2 figure

    Gauge Invariant Treatment of the Electroweak Phase Transition

    Full text link
    We evaluate the gauge invariant effective potential for the composite field σ=2ΦΦ\sigma=2\Phi^{\dagger}\Phi in the SU(2)-Higgs model at finite temperature. Symmetric and broken phases correspond to the domains σT2/3\sigma\leq T^2/3 and σ>T2/3\sigma > T^2/3, respectively. The effective potential increases very steeply at small values of σ\sigma. Predictions for several observables, derived from the ordinary and the gauge invariant effective potential, are compared. Good agreement is found for the critical temperature and the jump in the order parameter. The results for the latent heat differ significantly for large Higgs masses.Comment: 8 pages latex, DESY-94-043, 4 figures can be obtained via e-mail from [email protected]

    Algorithmic Bayesian Persuasion

    Full text link
    Persuasion, defined as the act of exploiting an informational advantage in order to effect the decisions of others, is ubiquitous. Indeed, persuasive communication has been estimated to account for almost a third of all economic activity in the US. This paper examines persuasion through a computational lens, focusing on what is perhaps the most basic and fundamental model in this space: the celebrated Bayesian persuasion model of Kamenica and Gentzkow. Here there are two players, a sender and a receiver. The receiver must take one of a number of actions with a-priori unknown payoff, and the sender has access to additional information regarding the payoffs. The sender can commit to revealing a noisy signal regarding the realization of the payoffs of various actions, and would like to do so as to maximize her own payoff assuming a perfectly rational receiver. We examine the sender's optimization task in three of the most natural input models for this problem, and essentially pin down its computational complexity in each. When the payoff distributions of the different actions are i.i.d. and given explicitly, we exhibit a polynomial-time (exact) algorithm, and a "simple" (11/e)(1-1/e)-approximation algorithm. Our optimal scheme for the i.i.d. setting involves an analogy to auction theory, and makes use of Border's characterization of the space of reduced-forms for single-item auctions. When action payoffs are independent but non-identical with marginal distributions given explicitly, we show that it is #P-hard to compute the optimal expected sender utility. Finally, we consider a general (possibly correlated) joint distribution of action payoffs presented by a black box sampling oracle, and exhibit a fully polynomial-time approximation scheme (FPTAS) with a bi-criteria guarantee. We show that this result is the best possible in the black-box model for information-theoretic reasons
    corecore